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Abstract 

We provide nationwide estimates of air pollution’s effect on short-run labor productivity for 
manufacturing firms in China from 1998 to 2007. An emerging literature estimates air 
pollution’s effects on labor productivity but only for small groups of workers of particular 
occupations or firms. To provide more comprehensive estimates necessary for policy analysis, 
we estimate effects for all but some small firms (90% of China’s manufacturing output) and 
capture all channels by which pollution influences productivity. We instrument for reverse 
causality between pollution and output using thermal inversions. 

Our causal estimates imply that a one 𝜇𝜇g/m3 decrease in PM2.5 (SO2) increases labor 
productivity by 0.011% (0.036%) with an elasticity of -0.58 (-0.54). Lowering PM2.5 (SO2) by 1% 
nationwide through methods other than reducing manufacturing output would generate 
annual productivity increases of CNY 74.1 (69.7) thousand for the average firm and CNY 11.8 
(11.1) billion or 0.079% (0.075%) of GDP across all firms. Improving air quality generates 
substantial productivity benefits and these should be considered in evaluating environmental 
regulations and their effect on firm competitiveness. 
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1 Introduction 

An emerging literature documents the effect of air pollution on short-run labor 
productivity. These papers significantly advance our understanding of how pollution 
affects productivity and convincingly demonstrate that air pollution can decrease labor 
productivity. However, because these studies utilize detailed measures of hourly or 
daily output, they focus on narrow groups of workers in particular occupations such as 
fruit picking (Graff Zivin and Neidell, 2012), garment assembly (Adhvaryu et al., 2014b), 
pear packing (Chang et al., 2016a), call center services (Chang et al., 2016b) or a few 
firms in textile assembly (He, Liu et al., 2016). While these estimates are useful for 
evaluating narrowly-targeted environmental policies or evaluating the costs and 
benefits for certain groups, their external validity is of concern in evaluating broad-
based pollution reduction policies. 

We provide comprehensive, nationwide estimates of air pollution’s effect on short-run 
labor productivity for manufacturing firms in China encompassing all channels of 
effects. Using satellite data to measure pollution we are able to include all firms in 
China’s manufacturing survey in our estimates. Since the survey includes all state-
owned enterprises (SOEs) and all non-SOEs with more than CNY 5 million in annual 
sales, our estimates capture 90% of China’s manufacturing output1 (Brandt et al., 2012) 
making them useful for evaluating nationwide environmental policies. 

We estimate an elasticity of labor productivity with respect to pollution of -0.58 for 
particulate matter less than 2.5 micrometers in diameter (PM2.5) and -0.54 for sulfur 
dioxide (SO2). Holding number of workers constant, lowering PM2.5 by 1% nationwide 
through methods other than reducing manufacturing output would increase the 
average firm’s output by USD 9.7 (CNY 74.1)2 thousand and increase output across all 
firms by USD 1.6 billion annually (0.079% of China’s average GDP over the sample 
period). Similar calculations for SO2 yield a per-firm increase of USD 9.2 thousand and 
an aggregate increase of USD 1.5 billion (0.075% of average GDP). These are significant 
effects and should be considered in any cost-benefit analysis of environmental policies. 

The primary obstacle in estimation is reverse causality. Ordinary least squares (OLS) 
estimates will bias pollution’s effect on labor productivity upward toward or above 
zero because more output per employee in a region leads to both more output and more 
pollution. Previous papers in this literature maintain exogeneity by focusing on one or a 
few firms which do not materially impact overall pollution levels. Estimating with a 
national sample no longer affords this condition. To overcome this endogeneity 
problem while achieving comprehensive estimates we employ the number of days with 
                                                           
1 Throughout the paper we will measure output by value added and use these terms interchangeably 
since we abstract away from intermediate inputs. 
2 A 2007 exchange rate of 7.6 is used throughout the paper. 
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thermal inversions (Arceo et al., 2016; Hicks et al., 2016; Jans et al., 2016; Sager, 2016) in 
geographic areas corresponding to counties. Thermal inversions form due to exogenous 
meteorological factors yet trap pollutants such as PM2.5 and SO2 near the ground 
degrading air quality. The instrument is highly predictive and, consistent with the 
simultaneity bias between output and pollution, when applied reveals more negative 
productivity effects than OLS estimates. 

A second estimation obstacle is potential spatial sorting across regions of low- versus 
high-skilled workers or low- versus high-polluting firms based on pollution. Using 
education as a proxy for skill we find no significant evidence of sorting by workers and 
pollution’s effect on productivity is similar for firms with high- and low-education 
workforces. Few firms move during the sample period consistent with no significant 
sorting by extant firms. Excluding firms that relocate results in greater effects on 
productivity indicating that pollution’s effect may be even greater if these are 
representative of the full sample. Pollution is not predictive of firm exit consistent with 
survival bias having limited effect on our estimates. 

This paper makes three primary contributions. First, we provide nearly exhaustive 
measures for the causal effect of pollution on the short-run labor productivity of a 
country’s manufacturing sector. Previous studies examine only small sets of workers in 
particular occupations or a small set of firms. Cost-benefit analyses of national 
environmental policies require comprehensive estimates of pollution’s effects since 
effects on particular occupations, firms, or industries may be idiosyncratic. We provide 
such a nationwide estimate for China and find larger estimates than previous, more 
focused, studies. A possible reason is that we estimate annual cumulative effects rather 
than those of shorter duration; however, this may also relate to the scope of our 
estimates. They reflect all manufacturing industries, firms and occupations rather than 
specific settings and they capture all channels by which productivity is affected 
including per-hour productivity and working hours. Our methodology is general and 
could be applied to any country experiencing sufficient variation in thermal inversions.  

Second, our findings shed new light on the debate about whether environmental 
regulations positively or negatively affect firm competitiveness (Jaffe et al., 1995). 
Historically, this debate has focused on the extent to which decreased competitiveness 
from environmental compliance costs are offset by process innovations that are both 
cleaner and of lower cost. Our results confirm another channel that influences this 
debate. Environmental regulations that decrease air pollution will in turn increase 
productivity and at least partially offset the decreased productivity due to complying. 
For example, Greenstone et al. (2012) find that the US Clean Air Act significantly 
decreased firm productivity because it induced firms to employ inputs that are not 
necessarily useful for producing commercial outputs but are for meeting regulatory 
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requirements – such as installing scrubbing and gas reclamation equipment and hiring 
environmental compliance officers. Our findings suggest that these estimates capture 
the net of two effects: reduced productivity due to compliance activities and increased 
productivity due to cleaner air. Therefore, an estimate of the productivity cost of 
compliance would require subtracting the productivity gains from cleaner air from the 
net effect. Put another way, firms are not made as uncompetitive when complying with 
environmental measures as they would be absent the productivity gains. 

Third, there is relatively little evidence concerning pollution’s effect on high-skilled 
workers (Chang et al. (2016b) is an exception using call center workers). We estimate the 
effects of PM2.5 and SO2 on labor productivity separately for firms likely to have high- 
versus low-skilled workers. We find very similar effects for these two subsets for both 
PM2.5 and SO2. This suggests that the results for call center service workers likely extend 
to high-skilled workers in manufacturing consistent with the fact that both PM2.5 and 
SO2 can penetrate buildings. 

Finally, estimates for China are important in and of themselves. China is the world’s 
most populous country and a large source of manufacturing and the resultant pollution. 
China represented 22% of the world’s manufacturing output in 2012.3 The findings also 
have implications for the global economy as China incurs a disproportionate fraction of 
the world’s pollution because of its substantial exports. Depending on the type of 
pollutant, 17 to 36% of China’s air pollution is attributable to exports (Lin et al., 2014). 
Our estimates imply that policies that reduce China’s air pollution can generate 
substantial increases in labor productivity in addition to health benefits and, given 
China’s extensive exports, benefit other countries via trade. Our estimates complement 
the literature that estimates the social costs of reduced health due to China’s air 
pollution (Matus et al., 2012; Chen et al., 2013; Ebenstein et al., 2015; Bombardini and Li, 
2016; He, Fan et al., 2016; Ito and Zhang, 2016). 

Many developing countries are hesitant to implement measures to reduce air pollution 
for fear of hindering growth (Hanna and Oliva, 2015). Our finding of significant labor 
productivity gains from such measures provides additional impetus to implement these 
measures. Because of China’s severe pollution, the central government has designed 
many policies to reduce air pollution but these often go unenforced because local 
governments lack incentives to do so or incentives emphasize alternative goals such as 
economic growth (Li and Zhou, 2005; Chen et al., 2016; Jia, 2017). Our findings reveal 
that local governments may underestimate the benefits to local economic growth of 
reducing air pollution. 

                                                           
3 “China has a Dominant Share of World Manufacturing,” United Nations and MAPI, January 6, 2014 
(https://www.mapi.net/blog/2014/01/china-has-dominant-share-world-manufacturing). 

https://www.mapi.net/blog/2014/01/china-has-dominant-share-world-manufacturing
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The rest of the paper is organized as follows. The next section discusses related 
literature. Section 3 describes the data; Section 4 specifies the econometric models and 
discusses identification issues and strategies. Section 5 presents our results and Section 
6 concludes. 
 

2. Pollution and Productivity 

How does air pollution affect short-run labor productivity? An extensive literature 
documents the negative effects that a high concentration of air pollution can have on 
human health. According to the Environmental Protection Agency (EPA), short-run 
exposure can lead to decreased lung function, irregular heartbeat, increased respiratory 
problems, nonfatal heart attacks, and angina.4 These short-run effects can result in 
decreased physical stamina at work and missed work days. Long-run exposure may 
lead to cardiopulmonary diseases, respiratory infections, lung cancer (EPA, 2004), and 
asthma (Neidell, 2004). These long-run health problems can manifest themselves in the 
short run if high levels of pollution trigger conditions resulting from previously 
accumulated exposure. Infant and elderly morbidity resulting from air pollution (Chay 
and Greenstone, 2003; Deryugina et al., 2016) can require working adults to miss work 
to care for them (Hanna and Oliva, 2015; Aragόn et al., 2017). Long-term exposure can 
also reduce life expectancy (Chen et al., 2013) which can result in experienced workers 
being replaced by new, inexperienced ones. 

Air pollution can also lower cognitive ability, alter emotions, increase anxiety, and have 
other psychological effects (Levinson, 2012; Lavy et al., 2014; Pun et al., 2016) which 
would affect the performance of both physical and knowledge workers. All of these 
effects can be compounded by spillovers to other workers (Arnott et al., 2005, Chapter 4). 
Moreover, particulates such as PM2.5  (Thatcher and Layton, 1995) and SO2 (Vardoulakis 
et al., 2010) can seep into buildings, making avoidance behavior costly or impossible for 
workers unless their employer provides proper filtration equipment. While our 
estimates are unable to distinguish between these various channels they capture the 
effect of all possible channels. 

Pollution can affect output through labor productivity, the intensive margin, and labor 
supply, the extensive margin. The intensive and extensive margins depend on the 
context and the time unit measured. In our context, time is measured in worker-years. 
Therefore, our productivity estimates capture all possible channels that affect per-hour 
productivity (intensive margin) and hours worked (one type of extensive margin) 
although we cannot distinguish them. We separately estimate the labor supply effects 
on number of workers (another type of extensive margin). 
                                                           
4 See the EPA websites: https://www.epa.gov/pm-pollution; https://www.epa.gov/so2-pollution; and 
https://www.epa.gov/co-pollution. 

https://www.epa.gov/pm-pollution
https://www.epa.gov/so2-pollution
https://www.epa.gov/co-pollution


6 
 

To illustrate this, suppose per-hour productivity is 𝐴𝐴, each worker’s annual hours is 𝐻𝐻, 
number of workers is 𝐿𝐿 and annual output is 𝑄𝑄. Then, 𝑄𝑄 = 𝐴𝐴 ∗ 𝐻𝐻 ∗ 𝐿𝐿. In the data we 
observe 𝐿𝐿 but not 𝐴𝐴 or 𝐻𝐻. Consider, as we do in our estimates, the effect of pollution (𝑝𝑝) 
on annual labor productivity holding the number of workers constant: 𝑑𝑑(𝑄𝑄 𝐿𝐿⁄ ) 𝑑𝑑𝑝𝑝⁄ =
𝑑𝑑𝐴𝐴 𝑑𝑑𝑝𝑝⁄ ∗ 𝐻𝐻 + 𝐴𝐴 ∗ 𝑑𝑑𝐻𝐻 𝑑𝑑𝑝𝑝⁄ . Our estimates therefore capture both the intensive (per-hour 
productivity) and one type of extensive margin (hours worked) effects on productivity. 
We also separately estimate the effect on labor supply (𝐿𝐿) (another extensive margin) to 
determine the effects on total output. 

Extant studies observe worker hours (𝐻𝐻) and therefore measure effects on per-hour 
productivity (𝑑𝑑𝐴𝐴 𝑑𝑑𝑝𝑝⁄ ); although many separately estimate effects on hours worked 
(𝑑𝑑𝐻𝐻 𝑑𝑑𝑝𝑝⁄ ) but find little effect. PM2.5 reduces per-hour productivity of pear-packing 
workers in California but has little effect on labor supply as measured by hours worked 
or absenteeism (Chang et al., 2016a). PM2.5 also reduces per-hour productivity of 
garment factory workers in India with no effect on absences (Adhvaryu et al., 2014b). 
PM2.5 and SO2 reduce per-hour output of textile workers at two sites in China but has 
little effect on hours worked (He, Liu et al., 2016). Ozone reduces per-hour productivity 
of outdoor fruit pickers in California but not hours worked or absenteeism (Graff Zivin 
and Neidell, 2012) and pollution measured by the API affects call center workers 
(Chang et al., 2016b) with no effect on hours worked. 

To provide precise measures of daily output, all of these previous studies focus on a 
small group of firms or a particular type of worker. Although this also establishes a 
causal link because pollution is exogenous to the activities of a small number of firms, 
the results may not generalize. A few other papers examine pollution’s effect on 
performance in other environments. Air pollution increases students’ absences (Currie 
et al., 2009) and their cognitive performances and test scores (Lavy et al., 2014). It also 
has negative effects on short-run performance of outdoor athletic participants including 
soccer players (Lichter et al., 2015), marathon runners (Fu and Guo, 2017), and baseball 
umpires (Archsmith et al., 2016). 
 

3. Primary data 

We estimate firm-level labor productivity combining comprehensive data on firm 
characteristics with air pollution data for highly-specific geographic areas across all of 
China from 1998 to 2007. Our pollution measures are monthly concentrations of PM2.5 
and SO2 derived from satellite-based Aerosol Optical Depth (AOD) retrieval techniques 
maintained by the National Aeronautics and Space Administration (NASA).5 We use 

                                                           
5 The AOD data are obtained from the Modern-Era Retrospective Analysis for Research and Applications 
version 2 (MERRA-2) and are available at 
https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_V5.12.4/summary?keywords=Aerosols#. We utilize 

https://disc.gsfc.nasa.gov/datasets/M2TMNXAER_V5.12.4/summary?keywords=Aerosols
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the AOD data because it provides the most comprehensive measures of air pollution 
across China’s geography and over time. AOD measures the extinction of the solar 
beam by dust and haze and can be used to predict pollution even in areas lacking 
ground-based monitoring stations (Gupta et al., 2006; van Donkelaar et al., 2010; Kumar 
et al., 2011). The SO2 concentrations are reported in the data and the PM2.5 
concentrations are calculated following Buchard et al. (2016). 

The AOD data has several advantages compared to ground-based pollution data. First, 
it begins in 1980 while ground-based pollution data is available only beginning in 2000 
enabling us to use two more years of data. Second, it covers the whole country while 
ground-based pollution data covers only 42 cities in 2000 increasing to 113 in 2010. 
Third, ground-based pollution data is potentially subject to human manipulation 
(Andrews, 2008; Ghanem and Zhang, 2014) while the satellite data is not. The AOD 
pollution data is reported in grids of 50 by 60 kilometers which we aggregate to the 
county level – the smallest administrative unit in China to which we can match firm 
locations.6 We then average by year to obtain annual mean concentrations of PM2.5 and 
SO2 in each county-year. 

Since the satellite pollution measure covers the entire country we can include all 
manufacturing firms for which we have data. Our firm-level output and characteristics 
data is from annual surveys of manufacturing firms conducted by China’s National 
Bureau of Statistics (NBS). The survey includes all state-owned enterprises (SOEs) 
regardless of size and all non-SOEs whose annual sales exceed CNY 5 million (USD 0.8 
million) and contains detailed information on firm location,7 accounting measures, and 
firm characteristics. This captures 90.7% of China’s total manufacturing output during 
our sample period (Brandt et al., 2012). The sample includes 2,223,406 firm-year 
observations and 568,888 unique firms. 

Following the matching algorithm described in Brandt et al. (2012) we match firms over 
time to form an unbalanced panel, and convert nominal into real values using industry-
level price indices.8 We drop 2% of observations with unreliable data following the 
previous literature (Cai and Liu, 2009; Brandt et al., 2012; Yu, 2014).9 In addition, six 
                                                                                                                                                                                           
M2TMNXAER version 5.12.4 which reports monthly AOD data within each 0.5 degrees latitude by 0.625 
degrees longitude (corresponding to 50 by 60 kilometers) grid. 
6 The six-digit administrative code is published by the NBS’ Administrative Division: 
http://www.stats.gov.cn/tjsj/tjbz/xzqhdm/201401/t20140116_501070.html (in Chinese). 
7 The survey is at the firm level and therefore it is possible that a firm has multiple plants in different 
locations leading to an incorrect match with the pollution data. However, more than 95% of the firms in 
the survey are single-plant (Brandt et al., 2012). Firm location is known at least up to the six-digit 
administrative code level used to match to the pollution data. Specific addresses are known only for a 
small share of firms and thus using these to match would make our data far less comprehensive. 
8 Their Stata programs are posted at: http://feb.kuleuven.be/public/N07057/CHINA/appendix. 
9 We drop observations with missing or negative values for output, value added, employment, or capital; 
firms with fewer than eight employees since they may not have reliable accounting systems; and firms 

http://www.stats.gov.cn/tjsj/tjbz/xzqhdm/201401/t20140116_501070.html
http://feb.kuleuven.be/public/N07057/CHINA/appendix
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percent of observations are firms appearing in only one year and dropped with the 
inclusion of firm fixed effects.  We also winsorize the top and bottom 0.5% of data based 
on the values of output, value added, employment, and capital for two reasons. First, to 
be consistent with the previous literature (Cai and Liu, 2009). Second, the largest firms 
are likely to have multiple plant locations making it impossible to match them with 
local pollution measures because we observe only the firm’s headquarters. Because the 
large firms that are winsorized have a disproportionate effect on total output we show 
that the results are similar using the non-winsorized data. The final data includes 
1,593,247 firm-year observations for 356,179 unique firms. Geographically, the sample 
includes 2,755 counties with an average of 57.8 firms per county-year.  

One issue with obtaining broad-based measures of productivity effects is how to 
measure productivity. Previous papers in the literature focused on one or a small set of 
firms producing a single well-defined product where output quantity is directly 
measurable. Pooling all manufacturing firms, as we do, requires an alternative measure. 
Since we abstract from intermediate inputs we use value added as the measure of 
output. Firms report value added directly in the data and it equals total production 
(including both sales and inventory) of all goods produced in the year valued at their 
market prices less the cost of all intermediate inputs employed in producing them. This 
approach is typical in aggregate studies such as ours since output is not directly 
observed (Syverson, 2011) although it raises two issues.  

First, using value added requires that prices do not reflect market power in either the 
primary or downstream input markets. If they do not, monetary-based measures are 
preferred over quantity-based measures as they reflect quality differences (Syverson, 
2011). As with other studies that use data sets with many firms, we cannot guarantee 
that prices are independent of market power; however, thermal inversions are 
independent of firm-level market power allowing us to consistently estimate pollution’s 
effect on productivity via instrumented pollution. The second issue concerns multi-
product firms. Their mix of products is not discernible from the firm’s value added and 
may be correlated with pollution levels. However, our instrumenting strategy addresses 
this issue: thermal inversions are uncorrelated with a firm’s decision of product mix 
thereby removing any bias in the instrumented results. 

We obtain daily, station-level weather variables that could affect both air pollution and 
firm output including temperature, precipitation, relative humidity (inferred from 
temperature and dew point temperature), and wind speed from the National Climatic 
Data Center at the National Oceanic and Atmospheric Administration.10 We convert the 

                                                                                                                                                                                           
violating accounting identities such as the components of net assets exceeding total assets or current 
depreciation exceeding cumulative depreciation. 
10 The data is available at: ftp://ftp.ncdc.noaa.gov/pub/data/noaa/. 

ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
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station-level data to county level using the inverse-distance weighting method 
(Deschenes and Greenstone, 2011) and then calculate annual means for temperature, 
humidity, and wind speed and annual cumulative precipitation. These are then 
matched to the firm data by county and year. 

For our instrument, we obtain thermal inversion data from NASA.11 The data reports 
air temperatures every six hours at 42 vertical layers from 110 meters to 36 thousand 
meters within 50- by 60-kilometer grids. We aggregate from the grid to the county level 
within each six-hour period and for each layer. Following Arceo et al. (2016), we define 
a thermal inversion as the temperature of the second layer (320 meters) being higher 
than that of the first layer (110 meters). We determine this within each six-hour period 
of each day for each county. Since thermal inversions are short-lived (on the order of a 
few weeks) relative to the annual output measure, we use a cumulate annual measure 
of inversions to make them temporally consistent. For our main instrument, we 
calculate for each county the annual number of days that have at least one inversion. 
We show that our results are robust to using two alternative instruments: the annual 
cumulative number of six-hour periods with an inversion and the annual cumulative 
strength of thermal inversions across all six-hour periods where strength is defined as 
the temperature difference between the first and second layers. 

Table 1 presents summary statistics of the key variables. The firm characteristics are at 
the firm-year level and reflect a high degree of variation in labor productivity. The 
pollution and thermal inversion data are at the county-year level. The pollution levels 
are such that they are likely to have an effect on mental and physical health and 
therefore productivity. The World Health Organization (WHO) recommends a 
maximum annual mean of ten 𝜇𝜇g/m3 for PM2.5 and a maximum mean of twenty 𝜇𝜇g/m3 
within a 24-hour period for both PM2.5 and SO2 (WHO, 2006). In the sample, the mean 
annual PM2.5 level is 53.5 with a high of 134.8 and the mean SO2 is 15.1 with a high of 
54.7. The annual number of days with thermal inversions displays significant variation 
ranging from zero to 333 days per year with a mean equal to a little under one-half year. 
The annual cumulative number of inversions also displays significant variation ranging 
from zero to 628 (almost two six-hour periods per day). 

[Insert Table 1 here] 
 

                                                           
11 Specifically, we use product M2I6NPANA version 5.12.4 from MERRA-2 available at 
https://disc.sci.gsfc.nasa.gov/datasets/M2I6NPANA_V5.12.4/summary?keywords=%22MERRA-
2%22%20M2I6NPANA&start=1920-01-01&end=2017-01-16.  

https://disc.sci.gsfc.nasa.gov/datasets/M2I6NPANA_V5.12.4/summary?keywords=%22MERRA-2%22%20M2I6NPANA&start=1920-01-01&end=2017-01-16
https://disc.sci.gsfc.nasa.gov/datasets/M2I6NPANA_V5.12.4/summary?keywords=%22MERRA-2%22%20M2I6NPANA&start=1920-01-01&end=2017-01-16
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4. Model specification and identification 

We focus on labor productivity because there are no obvious channels by which 
pollution would affect capital productivity.12 Our primary econometric model is: 

𝑙𝑙𝑙𝑙(𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 𝐿𝐿𝑖𝑖𝑖𝑖𝑖𝑖⁄ ) = 𝛽𝛽0 + 𝛽𝛽1𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛽𝛽2𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝜌𝜌𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, (1) 

where 𝑖𝑖 indicates firm, 𝑐𝑐 county, and 𝑡𝑡 year. For firm 𝑖𝑖 in year 𝑡𝑡 located in county 𝑐𝑐, 𝑌𝑌 is 
value added and 𝐿𝐿 is the number of workers.13 𝑃𝑃 is a measure of pollution and 𝑊𝑊 the 
vector of weather variables faced by firm 𝑖𝑖 in county 𝑐𝑐 in year 𝑡𝑡. We include a quadratic 
function of each weather variable to allow for non-linearity in its effects (Adhvaryu et al., 
2014a; Sudarshan et al., 2015; Zhang et al., 2016). The coefficient 𝛽𝛽1 captures the effect of 
pollution on labor productivity. Since 𝐿𝐿 is measured in number of employees, this 
captures the combined effects on productivity of output per hour worked and total 
hours worked including absences. 

Firm fixed effects (𝛼𝛼𝑖𝑖) capture time-persistent firm attributes that affect labor 
productivity. Since very few firms switch counties (7%) over the time period of our 
sample, these also absorb most county-specific time-invariant factors that affect 
productivity. Similarly, no firms switch industries so that all time-invariant, industry-
specific unobservables affecting productivity are absorbed by the firm fixed effects. 
Year fixed effects (𝜌𝜌𝑖𝑖) capture annual national shocks to firm output such as business 
cycle or macroeconomic effects. The error term (𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖) captures time-varying, firm-
specific unobservables that affect labor productivity. In our baseline estimation we 
cluster standard errors by firm to allow for serial correlation in productivity within firm 
over time. In robustness checks we allow for two-way clustering by firm and county-by-
year that allows separately for serial correlation of unobservables over time within firm 
and spatial correlation of unobservables within each county-year. In other robustness 
checks we cluster at the county-by-year level which allows unobservables to be spatially 
correlated within each county-year and at the county level which allows unobservables 
to be correlated over time and spatially within each county. 

Identification requires that, conditional on the control variables, pollution is 
independent of the error in Equation (1). There are two separate causal identification 
issues that are specific to our context: reverse causality and spatial sorting. 

                                                           
12 In Section 5 we directly test whether pollution affects capital productivity and find insignificant effects. 
13 Estimating labor productivity has been criticized because it depends on the level of capital employed 
(Syverson, 2011). This is not a problem in our setting because our instrumented pollution measure is 
orthogonal to inputs. 
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4.1 Causal identification issue – reverse causality 

Reverse causality results from the fact that production itself produces air pollution. The 
more output a county’s firms produce the worse its pollution. Estimated using OLS, this 
simultaneity will bias estimates upward toward or above zero. This is the main 
identification issue, which we address using instrumental variables. 

A valid instrument is correlated with a county’s air pollution but uncorrelated with its 
resident firms’ productivity. Our primary instrument is the annual number of days with 
a thermal inversion for each county. Normally, air temperature decreases with altitude 
above the Earth’s surface. A thermal (or temperature) inversion is a deviation from this. 
It occurs when a mass of warmer, less dense air moves on top of a cooler, denser air 
mass trapping dust and pollutants near the ground and increasing air pollution. We 
calculate thermal inversions using the first and second layers (110 and 330 meters 
respectively). 

Since thermal inversions are a meteorological phenomenon and, after conditioning on 
weather variables, are unrelated to production except via pollution it is a valid 
instrument for addressing the simultaneity bias of output and air pollution. A few 
studies have applied this identification strategy to estimate the effects of air pollution 
on various outcomes (Arceo et al., 2016; Hicks et al., 2016; Jans et al., 2016; Sager, 2016). 
With this as our instrument we employ two-stage least squares (2SLS) with the first-
stage equation: 

𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖 = 𝛾𝛾0 + 𝛾𝛾1𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛾𝛾2𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑖𝑖 + 𝜌𝜌𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖, (2) 

where 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖 is the number of thermal inversion days faced by firm 𝑖𝑖 in county 𝑐𝑐 in year 𝑡𝑡. 
The quadratic functions of weather controls from the second stage are included because 
these same variables affect the formation of inversions and are also needed to ensure 
exogeneity of instrumented pollution in the second stage (Arceo et al., 2016). 

4.2 Causal identification issue – spatial sorting 

Spatial sorting results from either firms or workers self-selecting into particular counties 
based on their pollution levels. Firms may choose to locate in counties with less severe 
pollution because it leads to higher productivity which would bias estimates of 
pollution’s effect on productivity upward toward or above zero. Alternatively, firms 
may choose to locate in counties with more severe pollution because it reflects less 
stringent underlying local environmental regulations and therefore lower costs – the 
“pollution haven” effect (Becker and Henderson, 2000; Greenstone, 2002; Brunnermeier 
and Levinson, 2004). In this case, the direction of the bias induced depends on whether 
firms with higher pollution output are more or less productive. If they are more 
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productive, estimates will be biased upward toward or above zero and if less 
productive downward away from zero. 

The firm fixed effects included in estimation absorb any initial endogenous sorting of 
firms across counties so that only sorting that occurs during the sample period will bias 
the results.14 Only 7% of firms relocate counties during the sample period. Excluding 
these reveals some evidence of firm sorting and suggests even larger productivity 
effects absent sorting. Firm exit during the sample period could introduce bias through 
endogenous selection. To check for this possibility we estimate the effect of pollution on 
the probability of exit (controlling for endogeneity) and find no significant effect. 

A second possible type of spatial sorting is workers choosing their location based on 
their willingness to pay for air quality. High-skilled workers generally have a higher 
willingness-to-pay for better air quality and are more productive than low-skilled 
workers. This would result in dirty cities having a high proportion of low-skilled 
workers and low firm productivity and clean cities having a high proportion of high-
skilled workers and high firm productivity (Lin, 2017) exacerbating pollution’s negative 
effect on firm productivity. 

Inclusion of firm fixed effects means that any initial endogenous sorting of workers will 
be absorbed in them and only movement of workers during the sample period will 
create bias. This effect is not likely large since we estimate annual effects and such 
migration would likely occur over longer periods, but we check for evidence of this 
occurring. We utilize China’s 2000 and 2005 population censuses (the only available 
during the sample period) to compute the college share of manufacturing workers in 
each county (six-digit administrative code) in these two years as a proxy for high-skilled 
labor. Significant geographic migration of workers by education level in response to air 
pollution should result in a weak correlation of this fraction within each county across 
the two years. We find a correlation of 0.81 significant at better than the 0.01% level 
suggesting that spatial sorting of workers is not a major concern. In addition, we 
estimate pollution’s effect separately on firms whose workforces are above and below 
the median in the fraction of college-educated workers and find similar results across 
the two subsets. 
 
5. Results 

5.1 OLS estimates 

We first present estimates not accounting for the simultaneity bias between 
productivity and pollution. Table 2 presents OLS estimates of Equation (1). PM2.5 

                                                           
14 Sorting could also occur by industry but since no firms switch industries this is also absorbed by the 
firm fixed effects. 
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pollution (Column (1)) has no effect on productivity, perhaps due to the simultaneity 
bias. SO2 pollution decreases productivity (Column (2)) with an elasticity of -0.083 
evaluated at the mean SO2 level in the sample. 

[Insert Table 2 here.] 

5.2 2SLS results 

Because of the simultaneity bias, OLS estimates will be biased upward toward or above 
zero. We use the annual number of days with a thermal inversion as an instrument for 
pollution concentration. The first-stage results in the top panel of Table 2 show that the 
instrument is a powerful predictor of both PM2.5 (Column (3)) and SO2 (Column (4)) 
concentrations. The coefficient on annual days with thermal inversions is positive and 
highly significant for both pollutants and the Kleibergen-Paap Wald rk F-statistic (KP) 
(Kleibergen and Paap, 2006) for weak identification is much larger than the Stock-Yogo 
critical value of 16.38.15 One additional day with an inversion increases PM2.5 by 0.032 
and SO2 by 0.0097 𝜇𝜇g/m3. These are big effects. A one standard deviation increase in the 
annual number of days with inversions increases PM2.5 by 2.5 𝜇𝜇g/m3 (4.8%) and SO2 by 
0.76 𝜇𝜇g/m3 (5.1%). 

The lower panel of Table 2 shows the second-stage results. In Column (3), instrumented 
PM2.5 has a negative and very significant effect on labor productivity. Consistent with 
the instrument correcting for simultaneity, the coefficient on PM2.5 moves from being 
insignificant in the OLS estimates to significantly negative. A one 𝜇𝜇g/m3 increase in 
PM2.5 decreases labor productivity by 1.08%.  Evaluating this at the mean PM2.5 in the 
sample (53.5) yields an elasticity of -0.58. Instrumented SO2 (Column (4)) also has a 
negative and very significant effect on productivity. A one 𝜇𝜇g/m3 increase in SO2 
decreases labor productivity by 3.60%.  Although the effect was negative and significant 
in the OLS estimates it is now more negative consistent with an upward bias due to 
reverse causality. Evaluating at the mean SO2 in the sample (15.1) yields an elasticity of 
-0.54. 

How large are these effects? Consider lowering PM2.5 by one percent nationwide 
through means other than lowering manufacturing output. This could include reducing 
other pollution sources like road dust, automobile exhaust, and power generation or by 
decreasing pollution per unit of manufacturing output via pollution abatement 
equipment that does not reduce output. This would increase the average firm’s value 
added by CNY 74.1 (USD 9.7) thousand annually and increase total value added across 

                                                           
15 Stock and Yogo (2005) critical values apply when model errors are independent and identically 
distributed. No critical values are available for the case when the model allows for standard errors that 
are robust to heteroskedasticity and clustering. 
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all firms by CNY 11.8 (USD 1.6) billion annually.16 This represents 0.079% of China’s 
GDP.17 Similar calculations for SO2 imply an output increase for the average firm of 
CNY 69.7 (USD 9.2) thousand and CNY 11.1 (USD 1.5) billion annually across all firms 
(0.075% of GDP).18 

China’s Air Pollution Prevention and Control Action Plan stipulates that by 2017 PM2.5 
concentrations should fall by 25%, 20%, and 15% in Beijing-Tianjin-Hebei, the Yangtze 
River Delta, and the Pearl River Delta regions respectively19 which are China’s main 
industrial centers. Using the midpoint of these three goals (20%) and scaling our 
elasticity estimate linearly, the productivity boost from reaching this target would be 12% 
(1.6% of GDP) assuming that pollution decreases originate from actions other than 
reducing manufacturing output. This, however, assumes that our estimates extrapolate 
fairly far outside the sample range. 

We can compare our estimates to previous ones although these apply only to particular 
types of workers or small sets of firms and are often for different pollutants. Also, all of 
these studies measure effects on per-hour productivity and hours worked separately 
while our estimates include both. Graff Zivin and Neidell (2012) estimate an elasticity of 
per-hour productivity with respect to ozone pollution of -0.26 for outdoor fruit pickers 
in California. Although lower than our elasticity, it is for a different pollutant and for a 
particular worker type in a much less polluted environment. For indoor pear packers in 
California, Chang et al. (2016a) estimate a per-hour productivity elasticity of -0.062 for 
PM2.5. This is lower than our PM2.5 estimate but it is again for a particular worker type 
in a much less polluted environment. In China, Chang et al. (2016b) estimate an 
elasticity of per-hour labor productivity with respect to the API of -0.023 for call center 
workers. This is again lower than our estimates but it applies to service workers in two 
specific locations of a specific industry. 

For garment factory workers in India, Adhvaryu et al. (2014b) estimate an elasticity of    
-0.052 for per-hour productivity with respect to PM2.5 pollution. While this is most 
directly comparable to our higher estimate, in that it applies to manufacturing workers 

                                                           
16 A 1% decrease in PM2.5 increases annual output by 0.58%. The mean annual output per firm in the 
sample is CNY 12.82 million implying an annual increase of CNY 74.1 thousand. There is an average of 
159,325 firms present in each year of the sample implying an annual increase in output across all firms of 
CNY 11.8 billion annually. 
17 China’s average annual real GDP over the ten-year sample period is CNY 14.85 trillion. 
18 Since manufacturing output is itself a major source of air pollution it would be useful to calculate the 
effects assuming that pollution is reduced proportionally across all sources including manufacturing 
output. However, this would require estimates of the relationship between pollution and manufacturing 
output and an assumption about how much, and whether, productivity increases brought about by 
reduced air pollution will generate more emissions. 
19 Issued by the State Council on September 10, 2013 (http://www.gov.cn/zwgk/2013-
09/12/content_2486773.htm). 

http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm
http://www.gov.cn/zwgk/2013-09/12/content_2486773.htm
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and the same pollutant, it applies to a specific firm and measures effects conditional on 
being at work indoors. He, Liu et al. (2016) examine textile workers in two firms in two 
Chinese provinces and find no contemporaneous effect from PM2.5 exposure but 
elasticities ranging from -0.035 to -0.30 due to cumulative effects over 25 to 30 days. The 
upper end of this range is about half of our estimate for all locations and all 
manufacturing industries in China. Overall, we find a larger effect than these previous 
papers although these studies measure daily or monthly effects while we capture 
annual cumulative effects. 

5.3 Robustness checks 

Table 3 shows robustness to different assumptions about the model’s standard errors 
compared to the baseline results replicated in Column (1). Since some of our 
explanatory variables are grouped at the county-year level and there may be time-
invariant unobserved factors affecting productivity at the county level, the standard 
errors may be biased downward (Kloek, 1981; Moulton, 1986). We check this in several 
different ways. Column (2) allows for two-way clustering of errors by firm and county-
by-year (Cameron, Gelbach, and Miller, 2011). This allows for serial correlation in 
productivity within firms as well as spatial correlation within each county-year. 
Although some significance is lost, the results remain very significant. Since there is no 
standard way to cluster with multi-way clustering (Cameron and Miller, 2015) we try 
two other methods. Column (3) clusters the standard errors by county-year, which 
allows unobservables to be spatially correlated within each county-year. The standard 
errors are similar to those under two-way clustering. Clustering at the county level, 
which allows for spatial and serial correlation within county, in Column (4) increases 
standard errors as expected but the results remain significant at better than the 5% level 
for both pollutants. 

[Insert Table 3 here.] 

Panel A of Table 4 show additional robustness checks of the 2SLS estimates for PM2.5. 
Our baseline estimates (reproduced in Column (1)) weight all observations equally. 
Column (2) re-estimates weighting observations by value added per firm. The 
coefficient yields a higher elasticity (-0.83) than the baseline estimates. Column (3) 
shows that not winsorizing the data leads to very similar results as the baseline 
estimates (an elasticity of -0.53). Column (4) uses the annual cumulative number of six-
hour periods with inversions as the instrument. Our baseline estimates assume all days 
with inversions are the same. This alternative instrument weights their severity by the 
number of six-hour periods within a day that have inversions. The instrument is very 
significant and the KP F-statistic is well above the Stock-Yogo critical value while the 
second-stage results yield a slightly lower elasticity (-0.45). Column (5) uses strength of 
thermal inversions as an alternative instrument. The severity of an inversion depends 
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on its temperature differential and counties with the same number of inversions may 
differ in severity. The alternative instrument is very significant and the KP F-statistic is 
well above the Stock-Yogo critical value while the second stage results are somewhat 
below the baseline estimates (elasticity of -0.46). 

[Insert Table 4 here.] 

Panel B of Table 4 repeats the same robustness checks for SO2. As with PM2.5, weighting 
the observations by value added (Column (2)) results in an effect which is larger in 
magnitude (elasticity of -0.82) than the baseline estimates reproduced in Column (1). 
Estimates using the non-winsorized data (Column (3)) are very significant and yield a 
somewhat lower elasticity (-0.50) than the baseline estimates. Finally, both cumulative 
number (Column (4)) and cumulative strength of thermal inversions (Column (5)) are 
powerful instruments and result in larger elasticity estimates (-0.86 and -0.89) than the 
baseline estimates. 

Table A1 in the Appendix shows robustness checks using log pollution rather than 
linear pollution in the first stage. Column (1) shows estimates for PM2.5. Pollution has a 
highly significant effect on productivity and the elasticity is very close to that estimated 
using a linear function. Results for SO2 are shown in Column (2). The coefficient is very 
significant and the elasticity is only slightly larger (0.60) than that using linear pollution. 

5.4 Tests for firm and worker sorting 

Firms may relocate to places with better air quality to improve labor productivity or to 
places with lax environmental regulation to lower costs. Table 5 shows tests for this 
potential spatial sorting. Column (2) estimates excluding firms that relocated across 
counties (about 7% of firms) during the sample period. The estimated elasticities (-0.89 
for PM2.5 and -1.02 for SO2) are larger for both pollutants than the baseline estimates 
using all firms (replicated in Column (1)) consistent with either firms avoiding pollution 
to increase their productivity or a “pollution haven” effect and high-polluting firms 
being more productive. This also means that our baseline estimates may understate 
pollution’s effect on productivity to the extent that the non-relocating firms are 
representative of the full sample. If pollution’s effect on productivity is strong enough 
firms may exit the market. Estimates using the full sample are conditional on survival, 
potentially understating the productivity effect. To see if this might be a major factor, 
Column (3) tests whether instrumented pollution significantly increases the probability 
of firm exit in the following year. The effect of pollution on an indicator variable set to 
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one in the last year in which a firm appears is not significant for either pollutant 
suggesting that exit bias is not a major concern.20 

It is also possible that workers endogenously select their location based on local air 
quality. High-skilled workers are more productive and generally have a higher 
willingness to pay for better air quality. If this leads to significant sorting of worker skill 
levels across counties, then pollution’s effect on productivity should be attenuated for 
firms with high-skilled workers. We use the fraction of workers with a college degree as 
a proxy for skill and divide firms into those above and below the median in fraction of 
college-educated workers. Columns (4) and (5) show the results of separately estimating 
Equation (1) on these two subsamples. These estimates include only firms that appear in 
2004 – the only year for which education data is available during our sample period – 
and at least one other year. The results show some evidence of sorting with the effects 
being slightly greater for firms below the median. However, the difference is not large 
and the effects for firms with high skilled workers are large and statistically significant. 

[Insert Table 5 here.] 

5.5 Multiple pollutants models 

In our baseline model, we estimate the effect of each pollutant separately. Since air 
pollutants are typically highly correlated, our single-pollutant estimates may capture 
both its effect as well as the effect of the other. To estimate the joint effects, we apply the 
two methods in Arceo et al. (2016). The first is to estimate PM2.5 and SO2 together. For 
the two instruments we use annual number of days with an inversion and annual 
cumulative strength of inversions. The second approach is to combine the two into an 
index and construct our own AQI based on the definition of China’s Ministry of 
Environmental Protection (MEP).21 This is a piece-wise linear transformation of the 
worst of the two air pollutants in each month. 

Column (1) of Table A2 in the Appendix presents the estimates when both PM2.5 and 
SO2 are included in the same model. The first stage performs well. The Sanderson-
Windmeijer F-statistics (Sanderson and Windmeijer, 2016) for both first instruments are 

                                                           
20 Year 2007 data is dropped in this estimation since we cannot observe whether firms present in 2007 exit 
in the following year. Estimates using a balanced panel could be used to address this issue as well as any 
selection effects by entering firms. However, only 7% of firms are present in all years due to significant 
firm turnover. For this small sample, the estimates are very significant and the estimated elasticities are 
much greater presumably due to exposure levels that differ from those in the full sample. 
21 See detailed formula at 
http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/W020120410332725219541.pdf (in 
Chinese). Our calculation differs from the MEP’s in two ways. First, ours is a monthly index rather than 
daily. Second, ours depends only on SO2 and PM2.5, while the MEP formula depends on two additional 
pollutants (CO, and O3). However, the worst daily pollutants are predominantly SO2 and PM2.5 in the 
MEP calculations. 

http://kjs.mep.gov.cn/hjbhbz/bzwb/dqhjbh/jcgfffbz/201203/W020120410332725219541.pdf
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well above the Stock-Yogo critical value of 8.68. The KP F-statistic for the joint strength 
of the instruments is also much greater than the Stock-Yogo critical value of 7.03. The p-
value of the under-identification test indicates that we can reject the hypothesis that the 
model is under-identified. In the second-stage, the PM2.5 effects are significant but lower 
in magnitude than the baseline results while the SO2 effects are not significant. This is 
likely due to the very high correlation (0.95 with a significance level below 0.01%) 
between PM2.5 and SO2. 

Using annual number of days with a thermal inversion as an instrument, Column (2) 
shows that the AQI index has significant negative effects on labor productivity. A one-
unit increase in AQI decreases labor productivity by 0.88%. The mean API is 72.6 
implying an elasticity of -0.64 – above the standalone elasticities for PM2.5 and SO2. 

5.6 Effect by worker skill level 

We are aware of only one paper that considers the effect of pollution on labor 
productivity of high-skilled workers: Chang et al. (2016b) find a significant productivity 
decrease for call center workers in China. Air pollution is commonly thought to 
primarily affect outdoor workers because of their unfiltered exposure and their holding 
occupations which are more physically demanding than high-skilled indoor workers. 
PM2.5 and SO2 can permeate indoors making it possible for them to affect indoor 
workers. Our data allows us to offer some evidence by skill level for manufacturing 
firms in China. We categorize firms based on the NBS’ definitions of high- and low-
technology firms.22 The results are shown in Columns (2) and (3) of Table 6 along with 
the estimates for the full sample in Column (1). For PM2.5, the estimates for the high- 
and low-technology groups are significant, virtually identical, and almost the same as 
those for the full sample. For SO2 the effects are significant for both groups and the 
estimate for the high-technology firms is only slightly lower than those for the low-
technology group and the full sample. Thus, the previous evidence for call center 
workers appears to extend to manufacturing firms and is consistent with evidence that 
air pollution affects cognitive not just physical effort. This suggests that air pollution’s 
effects extend to a larger portion of economic output that includes knowledge workers 
and services industries. 

[Insert Table 6 here.] 

                                                           
22 See http://www.stats.gov.cn/tjsj/tjbz/201310/P020131021347576415205.pdf for the definitions. The 
high-technology industries are medicine manufacturing, aviation and aerospace manufacturing, 
electronic and telecommunication manufacturing, computer manufacturing, medical equipment 
manufacturing, and information chemicals manufacturing. 

http://www.stats.gov.cn/tjsj/tjbz/201310/P020131021347576415205.pdf
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5.7 Effect on number of workers 

Our estimates capture the effect on labor productivity from all channels: changes in per-
hour productivity, hours worked, or absences. Pollution may also affect the number of 
workers employed. To assess this, we estimate Equation (1) with log number of workers 
in each firm as the dependent variable using annual number of days with a thermal 
inversion as the first-stage instrument. The survey data capture both permanent and 
contract employment thereby making it likely we can capture annual adjustments in 
response to pollution. The survey measures end-of-year employment so that 
employment changes due to pollution during the course of a year would be captured. 
The results are shown in Column (2) of Table 7. A one 𝜇𝜇g/m3 increase in PM2.5 (SO2) 
increases employment by 0.72% (2.40%) implying an elasticity of 0.39 (0.36). Although 
firms increase employment to compensate for some of the labor productivity loss it is 
not enough to offset the negative effect on labor productivity shown in Column (1). 
Column (3) estimates the effect of pollution on log product. The effects are significant 
and the elasticity of log product with respect to pollution is -0.19 for PM2.5 and -0.18 for 
SO2. These equal the summed effect of pollution’s effect on labor productivity (-0.58 for 
PM2.5 and -0.54 for SO2) and its effect on labor supply (0.39 for PM2.5 and 0.36 for SO2). 

As a placebo test, we re-estimate Equation (1) with log capital as the dependent 
variable.23 Consistent with pollution not affecting physical capital there is no significant 
effect for either PM2.5 or SO2 (Column (4) of Table 7). This also implies that firms are not 
adjusting their capital-labor ratios. 

Although the positive labor supply effects partially mitigate the negative labor 
productivity effects, employing additional workers imposes costs on firms. We can use 
the average wage in the sample to produce a ballpark estimate of these costs. A one 
percent increase in PM2.5 increases employment by 0.39%, or 0.80 additional workers 
per firm. The average annual wage per worker in the sample is CNY 12,650 (USD 1,664) 
implying an additional cost per firm of CNY 10,087 (USD 1,327). Aggregated across all 
firms this equals CNY 1.61 billion (USD 0.21 billion) annually or 14% of the productivity 
loss from the 1% increase in PM2.5. Similar calculations for SO2 yield an increase in 
employment of 0.36% or 0.75 workers. This implies an additional annual cost per firm 
of CNY 9,490 (USD 1,249) and an aggregate cost of CNY 1.51 (USD 0.20) billion or 13% 
of the associated productivity loss. 

[Insert Table 7 here.] 
 

                                                           
23 We calculate capital stock using the perpetual inventory method in Brandt et al. (2012). 
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6. Conclusion 

Using a large micro dataset on manufacturing firms in China, we estimate the effect of 
air pollution on labor productivity. To deal with the reverse causality of output and 
pollution we take an instrumental variable approach using thermal inversions, which 
are meteorologically determined. The approach attenuates the bias due to reverse 
causality and indicates a significant negative effect of air pollution on productivity. Our 
approach can be employed in any country with sufficient variation in thermal 
inversions. 

Our study shows a significant economic loss in labor productivity and therefore output 
in China due to air pollution. This also suggests a huge social benefit of improving air 
quality in terms of increasing labor productivity and total output. Our study contributes 
to the emerging literature on air pollution’s effect on short-run labor productivity by 
providing comprehensive, nationwide empirical evidence that captures all channels 
through which pollution can affect productivity. These estimates can be used directly 
for short-run effects in cost-benefit analyses of broad-based environmental policies. 

Since our identification relies on yearly variation we are unable to estimate long-run 
effects of pollution on productivity. In the long run firms may take steps to respond to 
pollution such as protecting indoor workers or moving to lower-pollution areas to boost 
productivity. Workers also may move in the long run to avoid pollution, especially 
high-skilled workers who have a greater willingness to pay to avoid pollution. We find 
no evidence of such sorting in our short-run results but this may occur over longer 
periods and would attenuate the productivity effects. Future work on these long-run 
effects would be useful. 

Although we can capture all channels by which pollution can influence productivity, 
we are unable to decompose the exact channels by which pollution lowers productivity. 
Significant effects on productivity per hour would indicate that there are large benefits 
from protecting workers from air pollution while at work while effects on hours 
worked might indicate exposure to pollution by a worker’s family members in addition 
to workplace exposure. These would be useful avenues for future research. 
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Table 1: Summary statistics 

  

Variables Mean 
Standard 
deviation Minimum Maximum 

          
Firm-year sample 

Firm         

Value added (1,000 CNY) 12,821 23,540 74 366,426 
Employment (person) 207 299 10 3,013 
Capital (1,000 CNY) 14,531 30,872 64 350,801 
Labor productivity (1,000 CNY/worker) 88 160 0.13 16,248 
          

County-year sample 
Air pollution         

Particular matter (PM2.5) (µg/m3) 53.52 25.46 2.62 134.84 

Sulphur dioxide (SO2) (µg/m3) 15.07 10.70 0.04 54.68 
          
Thermal inversions         
Annual days with thermal inversions 156.9  78.7  0.0  333.0  
Annual cumulative number of thermal inversions 245.5  142.1  0.0  628.0  
Annual cumulative thermal inversion strength (oC) 324.5  283.9  0.0  1,788.9  
Firm-year sample size: 1,593,247 including 356,179 firms. County-year sample size: 25,359 including 
2,755 counties. Sample period: 1998-2007. 

 

  



Table 2 OLS and 2SLS estimates – effect of pollution on labor productivity using annual number 
of days with thermal inversions as instrument 

   (1)   (2)   (3)   (4) 
  OLS   2SLS 
          First stage 

Dependent variable:         PM2.5   SO2 
                
Annual days with inversions       0.0323***   0.0097*** 
          (0.0004)   (0.0002) 
KP F-statistic         5,938   2,287 
# counties         2,755   2,755 

          
Dependent variable: ln(Value added per worker) 

 
        Second stage 

PM2.5 0.00004       -0.0108***     
  (0.0002)       (0.0015)     
SO2     -0.0055***       -0.0360*** 
      (0.0005)       (0.0050) 
Firm fixed effects Y   Y   Y   Y 
Year fixed effects Y   Y   Y   Y 
Weather controls Y   Y   Y   Y 
# firms 356,179   356,179   356,179   356,179 
Sample size 1,593,247   1,593,247   1,593,247   1,593,247 
All models include firm fixed effects, year fixed effects, and weather controls in 
both stages. Sample period: 1998-2007. Standard errors are clustered at the firm 
level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F-statistic is 
the Kleibergen-Paap Wald rk F-statistic for weak identification in the first stage 
(Kleibergen and Paap, 2006).  

 

 



Table 3 2SLS estimates – effect of pollution on labor productivity using annual number of days 
with thermal inversions as instrument (robustness checks for clustering of standard errors) 

  
  (1) (2) (3) (4) 
Dependent variable: ln(value added per worker) 

Panel A: PM2.5 -0.0108*** -0.0108** -0.0108** -0.0108** 
  (0.0015) (0.0044) (0.0043) (0.0049) 
KP F-statistic 5,938 98 99 53 

Panel B: SO2 -0.0360*** -0.0360** -0.0360** -0.0360** 
  (0.0050) (0.0148) (0.0146) (0.0164) 
KP F-statistic 2,287 35 35 23 
Cluster by firm Y N N N 
Cluster by firm and county-year N Y N N 
Cluster by county-year N N Y N 
Cluster by county N N N Y 
Firm fixed effects Y Y Y Y 
Year fixed effects Y Y Y Y 
Weather controls Y Y Y Y 
# firms 356,179 356,179 379,349 356,179 
Sample size 1,593,247 1,593,247 1,593,247 1,593,247 
Panel A shows second-stage results for PM2.5 and Panel B for SO2. All models use annual 
number of days with thermal inversions as first-stage instruments. All models include 
firm fixed effects, year fixed effects, and weather controls in both stages. Sample period: 
1998-2007. Standard errors are clustered at the firm level in Column 1, at the firm and 
county-by-year level in Column 2, at the county-by-year level in Column 3, at the county 
level in Column 4, and are reported in parentheses.  *** p<0.01, ** p<0.05, * p<0.1. The KP 
F-statistic is the Kleibergen-Paap Wald rk F-statistic for weak identification in the first 
stage (Kleibergen and Paap, 2006).  

 



Table 4 2SLS estimates – effect of pollution on labor productivity (robustness checks on firm 
weighting, sample, and instruments) 

  
  (1) (2) (3) (4) (5) 
Panel A:           
Dependent variable: PM2.5 
Instrument 0.0323*** 0.0322*** 0.0335*** 0.0162*** 0.0068*** 
  (0.0004) (0.0009) (0.0004) (0.0002) (0.0001) 
KP F-statistic 5,938 1,353 6,589 6,028 5,692 
Dependent variable: ln(value added per worker) 
  -0.0108*** -0.0155*** -0.0100*** -0.0084*** -0.0086*** 
  (0.0015) (0.0025) (0.0016) (0.0016) (0.0018) 
Panel B:           
Dependent variable: SO2 
Instrument 0.0097*** 0.0092*** 0.0101*** 0.0024*** 0.0010*** 
  (0.0002) (0.0004) (0.0002) (0.0001) (0.0000) 
KP F-statistic 2,287 456 2,573 560 518 
Dependent variable: ln(value added per worker) 
  -0.0360*** -0.0546*** -0.0333*** -0.0572*** -0.0589*** 
  (0.0050) (0.0091) (0.0053) (0.0109) (0.0123) 
First-stage instrument:           
   Annual days with inversions Y Y Y N N 
   Cumulative number inversions N N N Y N 
   Cumulative inversion strength N N N N Y 
Weighting by value added N Y N N N 
Winsorized Y Y N Y Y 
Firm fixed effects Y Y Y Y Y 
Year fixed effects Y Y Y Y Y 
Weather controls Y Y Y Y Y 
# firms 356,179 356,179 379,349 356,179 356,179 
Sample size 1,593,247 1,593,247 1,746,850 1,593,247 1,593,247 
Panel A shows second-stage results for PM2.5 and Panel B for SO2. For first-stage instruments, 
Columns 1 through 3 use annual number of days with thermal inversions; Column 4 annual 
cumulative number of inversions; and Column 5 annual cumulative strength of inversions. All 
models include firm fixed effects, year fixed effects, and weather controls in both stages. Sample 
period: 1998-2007. Standard errors are clustered at the firm level in all models and are reported in 
parentheses.  *** p<0.01, ** p<0.05, * p<0.1. The KP F-statistic is the Kleibergen-Paap Wald rk F-
statistic for weak identification in the first stage (Kleibergen and Paap, 2006).  



Table 5: 2SLS estimates – effect of pollution on labor productivity using annual number of days with thermal inversions as 
instrument (tests for firm and worker sorting based on pollution) 

  
  (1) (2)   (3)   (4) (5) 
Dependent variable: ln(value added per worker)   Exit   ln(value added per worker) 
            (Number skilled 
    Exclude       workers/employment) 
    relocating   Exit   Below Above 
  Baseline firms   probability   median median 

Panel A: PM2.5 -0.0108*** -0.0166***   0.0023   -0.0228*** -0.0160*** 
  (0.0015) (0.0020)   (0.0014)   (0.0026) (0.0025) 
KP F-statistic 5,938 7,284   5,938   2,008 1,673 

Panel B: SO2 -0.0360*** -0.0675***   0.0070   -0.0720*** -0.0543*** 
  (0.0050) (0.0081)   (0.0043)   (0.0083) (0.0086) 
KP F-statistic 2,287 2,389   1,530   802 638 
Firm fixed effects Y Y   Y   Y Y 
Year fixed effects Y Y   Y   Y Y 
Weather controls Y Y   Y   Y Y 
# firms 356,179 329,858   129,338   88,307 88,792 
Sample size 1,593,247 1,432,765   469,734   505,924 490,238 
Sample period: 1998 - 2007 in Columns 1, 2, 4, and 5; 1998 - 2006 in Column 3 to measure exit in the following year. 
Columns 1 through 3 include all firms; Columns 4 and 5 include only firms that are present in 2004 (when education 
data is available) and at least one other year. Panel A shows second-stage results for PM2.5 and Panel B for SO2. All 
models use annual number of days with thermal inversions as first-stage instruments. All models include firm fixed 
effects, year fixed effects, and weather controls in both stages. Standard errors are clustered at the firm level and 
reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F-statistic is the Kleibergen-Paap Wald rk F-statistic 
for weak identification in the first stage (Kleibergen and Paap, 2006).  

 



Table 6 2SLS estimates – effect of pollution on labor productivity distinguishing high- and low-
technology firms using annual number of thermal inversions as instrument 

  
  (1) (2) (3) 
Dependent variable: ln(value added per worker) 
  Full High Low 
  sample technology technology 

Panel A: PM2.5 -0.0108*** -0.0107** -0.0107*** 
  (0.0015) (0.0054) (0.0015) 
KP F-statistic 5,938 315 5,6593 

Panel B: SO2 -0.0360*** -0.0300** -0.0362*** 
  (0.0050) (0.0151) (0.0053) 
KP F-statistic 2,287 171 2,123 
Firm fixed effects Y Y Y 
Year fixed effects Y Y Y 
Weather controls Y Y Y 
# firms 356,179 24,220 331,959 
Sample size 1,593,247 111,121 1,482,126 
Panel A shows second-stage results for PM2.5 and Panel B for SO2. All models use 
annual number of days with thermal inversions as first-stage instruments. All 
models include firm fixed effects, year fixed effects, and weather controls in both 
stages. Sample period: 1998-2007. Standard errors are clustered at the firm level 
and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F-statistic is the 
Kleibergen-Paap Wald rk F-statistic for weak identification in the first stage 
(Kleibergen and Paap, 2006).  

 

 



Table 7: 2SLS estimates – effects of pollution on labor, output, and capital using annual number 
of days with thermal inversions as instrument 

  
  (1) (2) (3) (4) 
  ln(value added ln(number ln(value   
Dependent variable: per worker) workers) added) ln(capital) 

Panel A: PM2.5 -0.0108*** 0.0072*** -0.0036** 0.0013 
  (0.0015) (0.0011) (0.0016) (0.0013) 
KP F-statistic 5,938 5,938 5,938 5,938 

Panel B: SO2 -0.0360*** 0.0240*** -0.0120** 0.0043 
  (0.0050) (0.0037) (0.0052) (0.0045) 
KP F-statistic 2,287 2,287 2,287 2,287 
Firm fixed effects Y Y Y Y 
Year fixed effects Y Y Y Y 
Weather controls Y Y Y Y 
# firms 356,179 356,179 356,179 356,179 
Sample size 1,593,247 1,593,247 1,593,247 1,593,247 
Panel A shows second-stage results for PM2.5 and Panel B for SO2. All models use 
annual number of days with thermal inversions as first-stage instruments. All models 
include firm fixed effects, year fixed effects, and weather controls in both stages. 
Sample period: 1998-2007. Standard errors are clustered at the firm level and reported 
in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The KP F-statistic is the Kleibergen-Paap 
Wald rk F-statistic for weak identification in the first stage (Kleibergen and Paap, 2006).  

 

 



Table A1: 2SLS estimates – effect of pollution on labor productivity using annual number of 
days with thermal inversions as instrument (log-pollution specification) 

  
  (1)   (2) 
First stage       

Dependent variable: ln(PM2.5)   ln(SO2) 
Annual days with inversions 0.0006***   0.0006*** 
  (0.0000)   (0.0000) 
KP F-statistic 7,894   2,012 
Second stage       
Dependent variable: ln(value added per worker) 
ln(PM2.5) -0.5835***     
  (0.0798)     
ln(SO2)     -0.6002*** 
      (0.0829) 
Firm fixed effects Y   Y 
Year fixed effects Y   Y 
Weather controls Y   Y 
# firms 356,179   356,179 
Sample size 1,592,626   1,592,626 
All models include firm fixed effects, year fixed effects, and weather 
controls in both stages. Sample period: 1998-2007. Standard errors are 
clustered at the firm level and reported in parentheses. *** p<0.01, ** 
p<0.05, * p<0.1. The KP F-statistic is the Kleibergen-Paap Wald rk F-
statistic for weak identification in the first stage (Kleibergen and Paap, 
2006).  

 

 



Table A2: 2SLS estimates – multiple-pollutant models of effects of pollution on labor 
productivity 

  
  (1)   (2) 
Dependent variable: ln(value added per worker) 
        
PM2.5 -0.0065**     
  (0.0029)     
SO2 -0.0144     
  (0.0102)     
API     -0.0088*** 
      (0.0012) 
Firm fixed effects Y   Y 
Year fixed effects Y   Y 
Weather controls Y   Y 
SW F - PM2.5 4,298     
SW F - SO2 2,368     
First-stage KP F-statistic 902   5,728 
Under-identification test (p-value) 0.000   0.000 
# firms 356,179   356,179 
Sample size 1,593,247   1,593,247 
Column 1 first-stage instruments are annual number of days with thermal 
inversions and annual cumulative strength of thermal inversions. Column 2 
first-stage instrument is annual number of days with thermal inversions. All 
models include firm fixed effects, year fixed effects, and weather controls in 
both stages. Sample period: 1998-2007. Standard errors are clustered at the 
firm level and reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1. SW F are 
Sanderson-Windmeijer F-statistics for test of weak instruments for each 
endogenous variable. The KP F-statistic is the Kleibergen-Paap Wald rk F-
statistic for weak identification in the first stage (Kleibergen and Paap, 2006). 
The underidentification test is p-value for the Kleibergen-Paap rk LM statistic. 
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